Suggesting Natural Method Names to Check Name Consistencies

Son Nguyen Hung Phan
Univ. of Texas-Dallas, USA Towa State Univ., USA
sonnguyen@utdallas.edu hungphd@iastate.edu

ABSTRACT

Misleading names of the methods in a project or the APIs in a
software library confuse developers about program functionality
and API usages, leading to API misuses and defects. In this paper,
we introduce MNIRE, a machine learning approach to check the
consistency between the name of a given method and its implemen-
tation. MNIRE first generates a candidate name and compares the
current name against it. If the two names are sufficiently similar, we
consider the method as consistent. To generate the method name,
we draw our ideas and intuition from an empirical study on the
nature of method names in a large dataset. Our key finding is that
high proportions of the tokens of method names can be found in the
three contexts of a given method including its body, the interface
(the method’s parameter types and return type), and the enclosing
class’ name. Even when such tokens are not there, MNIRE uses the
contexts to predict the tokens due to the high likelihoods of their
co-occurrences. Our unique idea is to treat the name generation as
an abstract summarization on the tokens collected from the names
of the program entities in the three above contexts.

We conducted several experiments to evaluate MNIRE in method
name consistency checking and in method name recommending
on large datasets with +14M methods. In detecting inconsistency
method names, MNIRE improves the state-of-the-art approach by
10.4% and 11% relatively in recall and precision, respectively. In
method name recommendation, MNIRE improves relatively over
the state-of-the-art technique, code2vec, in both recall (18.2% higher)
and precision (11.1% higher). To assess MNIRE’s usefulness, we used
it to detect inconsistent methods and suggest new names in several
active, GitHub projects. We made 50 pull requests (PRs) and received
42 responses. Among them, five PRs were merged into the main
branch, and 13 were approved for later merging. In total, in 31/42
cases, the developer teams agree that our suggested names are more
meaningful than the current names, showing MNIRE’s usefulness.

CCS CONCEPTS
« Software and its engineering — Software maintenance tools.

KEYWORDS

Naturalness of Source Code; Program Entity Name Suggestion;
Deep Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380926

Trinh Le Tien N. Nguyen

U. of Eng. & Tech., Vietnam Univ. of Texas-Dallas, USA

trinhlk@vnu.edu.vn tien.n.nguyen@utdallas.edu

ACM Reference Format:

Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen. 2020. Suggesting
Natural Method Names to Check Name Consistencies. In 42nd International
Conference on Software Engineering (ICSE °20), May 23-29, 2020, Seoul, Re-
public of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3377811.3380926

1 INTRODUCTION

Easy-to-understand code must have meaningful and succinct iden-
tifiers and names for the program entities so that engineers can
quickly grasp the key functionality of the code [6]. Importantly,
misleading names for program entities in a regular program or
the APIs in a software library confuse engineers on API usages,
leading to misuses and defects [19]. That could negatively affect
other projects that rely on them [6]. Thus, companies have been
emphasizing on naming conventions and coding standards [5].

Recognizing the importance of meaningful names, researchers
have introduced automated tools to verify the consistency between
the methods’ names and their bodies, and then to suggest succinct
names for inconsistent methods [33], or recommend a meaningful
name for checking such consistency [6, 12]. Liu et al. [33] follows
an information retrieval (IR) direction with the key idea that two
methods with similar bodies should have similar names. However,
in our study, we found that in several cases, two methods with the
same bodies are given different names or two of them with the same
names have different bodies, because they are in different contexts
or for different tasks/purposes (Section 6). Importantly, with the
IR direction, their tool searches for the names of the methods with
similar bodies to suggest for an inconsistent method. Thus, it cannot
suggest a new name that it has not seen before.

Following machine learning direction, code2vec [12] suggests
a name for a given method with the key idea that two methods
with similar AST structures should have similar names. However
two methods implemented with different AST structures (e.g., for
versus while) can perform the same task, thus, can be given the
same name. Importantly, codeZvecis not capable of generating a new
name for a method. Instead, it computes the probability of a given
name for a given method body and interfaces. In contrast, Allamanis
et al. [6] can suggest a new name to a method by projecting all
the names in the method body and the tokens of the method name
into the same vector space using a neural network model. From the
vector space, their model selects nearby tokens to compose a new
method name. However, the names of program entities differ by
nature from the tokens of method names since the entities’ names
carry complete meaning, while the individual tokens of a method
name do not. Thus, they should not be in the same space.

In this paper, we introduce MNIRE, a machine learning approach
to check the consistency between the name of a given method m and
its implementation. Based on the contexts of the body, the interfaces,
and the enclosing class’ name, MNIRE first generates a name and

https://doi.org/10.1145/3377811.3380926
https://doi.org/10.1145/3377811.3380926
https://doi.org/10.1145/3377811.3380926

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

compares m’s current name against it. If they are sufficiently similar,
m is considered as consistent, otherwise it is inconsistent.

To infer the method name, we use the principle of naturalness of
software [27] that is applied on the tokens of entities’ names. That
is, the tokens composing the name of a method and the names of
entities within its contexts are not chosen randomly. The entities’
names appear regularly and naturally, and contain certain tokens
due to the intent of developers in implementing the functionality of
the method. Meanwhile, the functionality is captured abstractly via
a succinct method name. With that principle in mind, we first con-
ducted an empirical study to learn the nature of method names and
especially the relation between the tokens composing the names
of the entities in the contexts and the tokens of the method names.
Our results give the empirical foundation on whether the contexts
have impacts on predicting method names.

Our study was performed on a large dataset used in the prior
work [8] consisting of more than 17M methods in +14K highly-rated
Github projects (Section 3). We found that 62.9% of the method
names are unique. In contrast, 78.1% of the tokens as part of the
method names can be found in the previously seen method names.
Thus, a method name suggestion model should work at the level
of tokens of method names, rather than at entire method names.
Moreover, high proportions of the tokens of method names can be
found in the contexts of bodies, interfaces, and enclosing classes of
the methods. When encountering all the tokens of the names of the
entities used in a method’s body, in 35.9% of the cases, we could see
a token in the method’s name. Even if the tokens are not found in
the contexts, one could use the contexts to predict the tokens in the
method names due to the high probabilities of the co-occurrences of
those tokens. The reasons are that while the implementation repre-
sents the method body, the interface reflects its input/output. Hence,
the method could be named to reflect somewhat its input/output.
The enclosing class provides the general context of task/purpose
in which the method is realized. In brief, our results provide an
empirical evidence to confirm the principle of naturalness of soft-
ware [27] that also holds for the tokens composing the names of
program entities. That is, the tokens are repetitive and the basis of
such repetitiveness/regularity of those tokens can be captured by a
statistical model that is trained on a large code corpus.

Based on the results of our study, we developed a method to sug-
gest a method name. We consider the method name as the abstractive
description on the method’s functionality. The problem of generating
amethod name is treated as the abstractive text summarization. Each
sentence is the sequential representation of the tokens in a context.
The method’s name is broken into a sequence of tokens, which is
generated as a summary of the input sentences. To create an ab-
stractive summary for a method, we choose Encoder-Decoder [17].
The model statistically produces the encode of the input to sum-
marize the essence of the sentences. The model is used to capture
the contextual sentences and to rephrase them in a short sequence
with possibly different tokens, which form the suggested name.

We conducted several experiments to evaluate MNIRE in method
name consistency checking and in method name recommending on
two large datasets that have been used in the previous works with
2M and 14M methods, respectively [12, 33]. To avoid bias, we chose
these datasets that are different from the dataset used in our empiri-
cal study from which we draw our solution. To detect inconsistency

Nguyen, Phan, Le, and Nguyen

cases, MNIRE outperformed the state-of-the-art approach in Liu et
al. [33] by 10.4% and 11% relatively in recall and precision, respec-
tively. We found that there exist several cases that Liu et al. [33]’s
solution of “Similar method bodies lead to similar names” does
not work. In those cases, the tokens in other contexts help MNIRE
distinguish those methods and make correct detections. For method
name suggestion, MNIRE improves relatively over code2vec [12] in
both recall (18.2% higher) and precision (11.1% higher).

Our result also shows that using the representations for source
code from lexical tokens, to ASTs (e.g., as in code2vec), to Program
Dependence Graphs (PDGs), the model has lower accuracies than
MNIRE. This suggests that to recommend a method name, which
is the abstract of entire method, using tokens of the names in the
contexts as in MNIRE yields better performance than using ASTs
or PDGs, which represent code structure and dependencies.

There are 43.1% of the cases suggested by MNIRE that exactly
match with the correct method names in the oracle, and 5.1% of
those cases (i.e., 2.2% of total cases) do not appear in training data.
This shows that MNIRE is able to learn to suggest the method names,
rather than retrieving what have been stored and seen in the train-
ing corpus. Finally, there are 13.1% of the cases in which the names
are not previously seen in the training data. The precision and recall
of this set of generated names are 59.8% and 58.3% respectively. To
assess MNIRE’s usefulness, we made 50 pull requests on suggesting
a new name for the inconsistent methods detected by MNIRE, and
received 42 responses. Among them, 5 PRs were actually merged
into the main branch, and 13 were approved for later merging. In
total, there are 31 cases where the developer teams agree that our
suggested names are more meaningful than the current names.

In summary, this paper makes the following contributions:

A. Empirical Study: Our results confirm and provide empirical
evidence for the principle of naturalness of software [27] on the
regularity at the token level of program entities’ names.

B. Representation and Tool: a novel approach/tool to recom-
mend method names and to detect method name inconsistencies.
The method name generation is treated as an abstractive summa-
rization of the tokens of the entities’ names in the contexts. The
intuition is that the method names depend on the names of the
program entities to serve the purpose of the method.

C. Empirical Results: Our extensive empirical evaluation shows

1) that MNIRE is useful in detecting inconsistencies in method
names and in suggesting meaningful method names for real-world
projects. We show that it outperforms the state-of-the-art approaches
in both inconsistency detection and method name suggestion.

2) as a surprising finding that for method name suggestion, re-
lying on the regularity of the tokens of the entities’ names in the
context yields better results than using the code structures (AST)
and dependencies (PDG). For detailed results, see our website [1].

2 MOTIVATING EXAMPLES

We first present the examples on the method name inconsistency
problem, and then discuss the observations motivating MNIRE.
2.1 Method Name Inconsistency

Let us present two typical scenarios of this inconsistency problem.
The first scenario is that the inconsistency occurs at the first place,
when a misleading or confusing name is given for a method. In

Suggesting Natural Method Names to Check Name Consistencies

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

public class ProfilerTimerFilter {

/*%
* The maximum time the method represented by IoEventType ...
*/
//Correct method name: getMaximumTime
public long getMaxValue(IoEventType type) {

if (!timerManager.containsKey(type))

throw new IllegalArgumentException("...");
return timerManager.get(type).getMaximum();

Figure 1: A confusing method name in Apache MINA project

Figure 1, an API method in Apache MINA project [4], which was
implemented to get the maximum time, is inappropriately named at
commit 49d56328. The initial name for the method is getMaxValue,
which does not reflect well the functionality of the method. Hence,
the development team decided to change the method name to a
more precise method name, getMaximumTime; and this change was
explained at commit aadd1fbc with the message “Renamed public
methods in ProfilertimerFilter to clarify its meaning”.

In another scenario, the inconsistency between the method name
and the method functionality occurs during software evolution. That
is, code changes during development make the method name no
longer consistent with the new implementation. For example, Fig-
ure 2 shows the first version of the method named getHostName
in Apache Cassandra project [2], in which the name reflected well
the method’s purpose. After a few months of the development, the
team changed their design to use IP address in the entire project
as explained at commit f@6a9da6é: "switch to IP everywhere". Con-
sequently, the body of this method was changed to return an IP
address, instead of a host name as in its previous version (Figure 2).
This change leads to that getHostName was no longer appropriate
for its new implementation shown in Figure 3. Finally, to fix this
inconsistency, this method was renamed to have a more appro-
priate name, getHostAddress, as this was explained in the log of
the commit 0bf69f8c: “rename getHostName -> getHostAddress
since it should always be an IP now”.

The method names such as getMaxValue and getHostName, that
poorly reflect the program behavior, can confuse programmers on
the APIs’ functionality. Programmers might incorrectly use these
APIs. In fact, an empirical study showed that poor method names
can affect other projects [6] and even cause software defects [19].
Thus, it is important to check name inconsistency for the methods.

2.2 Observations and Approach Motivation

In the examples, the new method names, getMaximumTime and
getHostAddress, descriptively summarize the purpose of the meth-
ods shown in Figures 1 and 3, respectively. That is, the good name of
a method can be considered as the abstract of the meaning/purpose of
the method. If a model aims to derive a good name for the method,
that good name can be used to check the current method’s name to
decide if the inconsistency between the method’s implementation
and its name occurs or not. Moreover, generating the good name
for a method is beneficial not only for suggesting the alternative for
the inconsistent name, but also for recommending the appropriate
name for the method at the first time when the method was written.

public static String getHostName(){
if (DatabaseDescriptor.getlListenAddress() != null)
return DatabaseDescriptor.getListenAddress();
return getLocalAddress().getCanonicalHostName();

Figure 2: Method getHostName in Apache Cassandra project
before commit f@6a9daé

// Appropriate method name: getHostAddress
public static String getHostName() {
InetAddress inetAddr = getlLocalAddress();
if (DatabaseDescriptor.getListenAddress() != null) {
inetAddr = InetAddress.getByName(
DatabaseDescriptor.getListenAddress());
}
return inetAddr.getHostAddress();

Figure 3: After commit f06a9da6, the name getHostName is
no longer appropriate for its new implementation

To generate a good method name, one can rely on multiple
factors. Let us illustrate these factors via the following observations:

O1. In a method, the program entities including the variables/-
fields/methods that are used/accessed/invoked to implement the
method body are often not named randomly. These names usually
carry certain meaning that reflects the roles of the program enti-
ties which collectively perform the task to accomplish the purpose
of the containing method. Therefore, the method’s name, that ab-
stracts the method’s purpose, and the names of the program entities
used to implement the method’s body, have a relation with regard
to the description of the method’s functionality. Such relation has
two folds. First, the method’s name and the name of a variable,
field, or method call in the body could share parts relevant to the
method’s functionality. In the scenario 1, the parts of the good
name getMaximumTime can be found in the variables’ names or
method calls in the body, e.g., getMaximum, timerManager. Second,
the tokens composing the good method name and those of the pro-
gram entities in the body often co-occur (Section 3). This suggests
that encountering the tokens of the entities in the method body
(referred to as implementation context) can provide an indication to
predict the tokens of the good method name.

02. The types of the parameters and the return type of a method
are also parts of the method declaration. Technically, they describe
the method’s input and output, and have significant impact on
its usage with other entities. Let us call this the interface con-
text. Thus, the interface context can affect the name of the method,
and they can be used for the name suggestion. For example, in
the class FileUtils of Apache Commons IO library [3], the method
copyURLToFile takes two parameters source and destination
of the types of URL and File respectively, and is used to copy
bytes from source to destination. Whereas the method that
also copies bytes to a File but from InputStream is given a dif-
ferent name, copyInputStreamToFile. As another example, in
the class FileUtils, while readFileToString returns a String,
readFileToByteArray returns byte[].

03. In object-oriented programming, a method m defines a be-
havior/action of an object o belonging to a class C. This implies that

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 1: The Occcurrences of Method Names and Tokens

Method name | Token
Mean #occurrence 4.8 400.3
Median #occurrence | 1 3
#occurrence = 1 62.9% 21.9%
#occurrence > 1 37.1% 78.1%

the object o could perform the action described by the name m of
the method. Therefore, the name C of the class for o could be consid-
ered as the subject that can take the action described by the name m.
In the scenario 1, an object of the class ProfilerTimerFilter can
invoke the action of the method getMaximumTime. Thus, the class
name ProfilerTimerFilter is the subject of the action described
by the term getMaximumTime. As a result, the class (called enclosing
context) can be used to help infer the name of the contained method.

3 EMPIRICAL STUDY

Based on our observations, we conducted an empirical study to
answer the following questions on the nature of method names:
RQ1: What are the characteristics of method names regarding their
uniqueness and sizes?
RQ2: How is the relation between method names and the imple-
mentation, interface, and enclosing class contexts in a program?
The answers to the questions provide the empirical foundation
on whether the tokens/names in contexts could have predictive
impacts on the occurrences of the tokens of the method names.
Data collection and processing. We used the dataset of 14,317
top-ranked, high-quality, long-history Java projects on GitHub, that
was used in a prior work [8]. In this dataset, all duplicated Java files
and migrated projects and the forks of the same projects are filtered
out. This dataset includes 2,127,355 files and 17,012,754 methods. It
has the latest, stable versions of the projects, ensuring the method
names at the stable and good standing. For each method in the
dataset, we collected the method’s name, the parameters’ names
and types, the return type, the class name, and the names of the
variables, fields, and method calls within the body of the method.
We tokenized each of those names using Camelcase and underscore
naming conventions, and the tokens are normalized to lowercase.

3.1 Uniqueness and Sizes of Method Names

In our dataset, there are 3,402,550 unique method names and 120,303
unique tokens in method names. On average, there are 2.64 tokens
per method name, and the median is 3 tokens. The longest one
contains 83 tokens. Meanwhile, the number of tokens in a method
body is 17.3 times greater than that of a method name. There are
95% method bodies whose numbers of tokens are 3.0 times greater
than the method names. Most of method names (with few tokens)
are multiple times shorter than the corresponding method bodies.

As seen in Table 1, for method names, nearly 2 out of 3 names
(62.9%) are unique. This leads to that a high number of method names
(= 2/3 of the names) cannot be identified by searching in the set of
cases that are previously encountered. The mean value 4.8 of the oc-
currences of method names is due to a large number of occurrences
of common names, e.g., toString, equals, and hashCode.

In contrast, for the tokens as parts of method names, a token is
usually used repeatedly multiple names. 3 out of 4 tokens (78.1%)

Nguyen, Phan, Le, and Nguyen

Implementation,

Interface

Figure 4: % of tokens in method names found in contexts

used to comprise a method name are likely to be previously seen as
parts of other method names. Thus, we can conclude that a method
name is often comprised of the tokens that have been previously seen.

These above results support us to use a generative summarization
approach to learn the tokens composing method names from the tokens
that are previously encountered in other method names.

3.2 Method Names and Contexts

321 Common tokens shared between a method name and
the contexts. For a method, we first computed the percentage
of the tokens of the method name that also appear in its
contexts. In Figure 4, on average, for a method, 65.0% of the tokens
in its name are found in the names of the program entities in the
contexts (the median is 66.7%). Note that the mean and median
number of tokens in a method name are 2.7 and 3, respectively. Thus,
on average, about 2 out of 3 tokens of a method name can be found in
the three contexts. As seen in Figure 4, the highest percentage of the
tokens in a method name is found in the body (62.0%), while the next
ones are in interface context (14.9%) and enclosing context (6.1%).

The reasons for such trend among three contexts are as follows.
First, the implementation context usually contains the largest num-
ber of tokens, and the number of tokens in a class name is usually
less than that of interface context (including the names, and the
return type and parameters’ types). Second, since for a method, its
name describes the functionality, while the implementation context
describes how the functionality is realized, the implementation con-
text has the closest relation with the method name. Meanwhile, the
interface context describes how the method interacts with other
entities, thus having a stronger relation with the method name com-
pared to the enclosing context, which describes the general context
for the method and others in the same class. We will quantitatively
analyze their impacts on name suggestion accuracy in Section 6.

We also aim to explore the pervasiveness of the sharing tokens be-
tween method names and the contexts. Specifically, we calculated
the percentages of the methods whose names share certain
proportions of tokens with the corresponding contexts.

We found that 84.6% of the methods are given the method names
in which at least 33.3% of the tokens (1 out of 3 tokens) are found in
the contexts. In 79.8% of the methods, at least half of the tokens in
method names are in the contexts. Especially, 36.7% of the methods
is comprised of the tokens, such that all of the tokens in method
names are in the contexts. Thus, there are high percentages of the
methods whose names share with those of the entities in the context.
3.2.2 The conditional occurrences of tokens in the method
names on the contexts. We investigated the conditional occur-
rences of the tokens in method names on those of program entities

Suggesting Natural Method Names to Check Name Consistencies

10.00%
Consistent

Inconsistent

Interface (input)

Average P(t|C)

Interface (output) Enclosing

Implementation

Figure 5: The average conditional occurrence of tokens in
method names on the contexts, P(t|C)

in the contexts. For a method, we computed the conditional occur-
rence as the conditional probability that the token ¢ is used in the
method name given the tokens from the names in the contexts. For
a context, the conditional probability of ¢ given context C is com-

puted as: P(¢|C) ~ %&%’)C)
of methods whose names contain ¢, and their contexts are identi-
cal to C. Occur(C) is the number of methods whose contexts are
identical to C. The higher P(¢|C), the stronger power the context C
provides to predict the token ¢.

We found that on average, the occurrence of a token in method
name conditionally on the implementation context is 35.9%. That is,
when encountering all the tokens in a method’s body, in 35.9% of
the cases, we could see a token in the method’s name. Meanwhile,
the input interface (parameters), output interface (return type), and
enclosing contexts provide certain indication to predict the tokens
in method names, in which the conditional occurrences of a token
in method name on each of those contexts are 18.8%, 17.1%, and 8.3%,
respectively. Especially, there is a considerable number of tokens
that are always found in the method names when certain contexts are
encountered (i.e., the case when P(t|C) = 1). Specifically, the per-
centages for the implementation, input interface, output interface,
and enclosing contexts are 5.9%, 2.2%, 1.5%, and 0.63%, respectively.
For example, the enclosing context of smtp mail sender always
contains the methods whose names contain the token send. Among
the cases of P(t|C) = 1, the percentage of the cases in which the token t
does not appear in C where C is implementation context is 43.6%. The
respective percentages of such cases for input, output, and enclosing
contexts are 89.7%, 76.6% and 82.6%. Thus, even the tokens are
not in the contexts, the contexts can be used to predict the
tokens in method names due to high conditional occurrences.
3.2.3 Conditional occurrences of tokens in inconsistent and
alternative good names on the contexts. We also study the ca-
pability of the contexts in making distinction between a consistent
name and an inconsistent name of a method. Specifically, we used
a dataset (see Section 5) from Liu et al. [33], which contains a set of
methods whose names and their bodies are inconsistent, as well as
the corresponding good names that were used by real-world devel-
opers to replace the inconsistent names of those methods. Figure 5
shows the average conditional probabilities on the occurrences of
the inconsistent and alternative good names of the tokens in the
method names given each of the contexts. As seen, for all contexts,
the average P(t|C) of the tokens in inconsistent method names is
relatively much lower than that in the alternative consistent names.
Thus, each context can provide the indication of the occurrences of
the tokens in good names more than those in inconsistent names.

where Cooccur(t, C) is the number

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Our results provide empirical evidence to confirm the principle of
naturalness of software [27] that also holds for the tokens composing
the names of the methods and the names of program entities in
the contexts. The tokens composing the names of the entities in
the contexts appear together regularly and naturally due to the in-
tention of developers in realizing the method’s functionality. That
functionality is captured by an abstract, succinct method name.
Thus, the appearances of the tokens in the entities in the contexts
can have impact on those of the tokens in the method name. For ex-
ample, in the method getHostAddress, which aims to retrieve the
host address, the tokens of the program entities (inet, Addr, Local,
Address, Listen, etc.) are relevant to achieve that task. Moreover,
our results also confirm the benefits of using code contexts for
name prediction as in the prior work for code-to-texts [28].

Conclusion. We conclude the following results in our study:

(1) 62.9% of the full method names are unique. For a given
method, one cannot rely solely on searching for a good
name in the data of the previously seen method names.

(2) 78.1% of the tokens in method names can be found in the
other previously seen method names.

(3) There are high proportions of the tokens (average of
65.0%) of method names which are shared with the three con-
texts. There are high percentages of the methods (79.8%)
whose tokens in names share (+50%) with the tokens of the
entities’ names in the contexts.

(4) When encountering all the tokens of the name of the pro-
gram entities used in the body of a method, in 35.9% of the
cases, we could see a token in the method’s name.

(5) Even the tokens are not found in the contexts, one could
use the contexts to predict the tokens in the method
names due to those high conditional occurrences.

(6) Each context provides the indication of occurrences of the
tokens in the good names more than in inconsistent names.

4 MNIRE: CONSISTENCY CHECKING MODEL

In this work, we propose MNIRE, a machine learning approach to
generate the candidate good name for a given method, and use it to
compare with the current method name to check its consistency.

4.1 Key Ideas

Naturalness of Names at Token Level. To infer a good candi-
date name, we use the principle of naturalness of software [27] on
the tokens of the program entities’ names. Our empirical study con-
firms the principle at the token level. We also draw our ideas from
those results. That is, to learn the basis of regularity of the tokens
in the names, we rely on statistical learning from the contexts with a
large code corpus: the tokens of program entity names regularly co-
occurring have higher impact in deciding the tokens of the method
name than the less regular ones. Thus, observing the tokens of pro-
gram entities in the three contexts from a large corpus, MNIRE can
leverage that to derive the most likely tokens in the method names.
For inference, MNIRE focuses on 1) implementation context (how the
method is implemented), including the names of the variables, fields,
and methods that are used, accessed, or invoked in the method’s
body, 2) interface context (the method’s input/output), including the
parameters’ types and the return type of the method, 3) enclosing
context (the enclosing class), including the class name’s tokens.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Abstractive Summarization. In MNIRE, we consider the method
name as the abstract on the method’s functionality, which is expressed
via the three above contexts. We treat the problem of generating a
method name as the abstractive summarization on the sentences
extracted from the tokens of the program entities in the three
contexts. As input, for each context, a sentence is formed by the
textual tokens of the entities in the context. The method’s name
is broken into a sequence of tokens, which will be generated as a
summary of the sentences for the contexts. The rationale for the
choice of abstractive summarization (the summary is an abstract
of the texts) over extractive summarization (the summary is the
few selective sentences from the texts) has two folds. First, the
number of tokens of a method name is much smaller than those of
the sentences representing the contexts (Section 3.1). Second, the
method name can be a new sequence of tokens with new tokens.
To produce an abstract for a method, we use a machine learning
model, called Encoder-Decoder [17]. The model aims to capture
the sentences and then rephrases them in a short sequence with
possibly different tokens, which form the suggested method name.

4.2 Context Extraction

To build the contextual sentences of a method, we first extract
the implementation (IMP), interface (INF) and enclosing (ENC) con-
texts. Figure 6 shows the contexts extracted from the method
getMaximumTime. IMP is the set of tokens of the variables/fields
and methods that are used in the method body. Technically, in the
AST of the method body, they are AST simple names, which are
the identifiers being declared/referenced, other than keywords or
literals. The examples are timer manager, contains key, or type.
Meanwhile, the INF context of the method includes two parts: 1) the
set Input of the tokens from the parameters’ types, e.g., {io event
type}, and 2) the set Output of the tokens from the return type, e.g.,
long. Finally, the set ENC contains the tokens from the enclosing
class name, e.g., profiler timer filter. A sequence of tokens
for a context is called a (contextual) sentence.

All the contextual sentences are then concatenated to form the
sequential representation of the three contexts, that are separated by
the periods (“”). In the INF sentence, the Input and Output parts are
separated by commas (*)’). For example, the contextual sentence of
method getMaximumTime is "profiler timer filter . io event
type , long . timer manager ... get maximum". In the contextual
sentences, for IMP and INF, the tokenized names/types are arranged
in the appearance order in the code. We performed experiments in
several random orders of names/types for IMP and INF, and found
that the order of names/types does not affect the results.

4.3 Abstractive Summarization Model

Figure 7 describes the architecture of the abstractive summarization
model, seq2seq [17] that we used in MNIRE. This model is based on
an encoder-decoder architecture with attention mechanism [14, 35].
Generally, the model aims to first capture contextual sentences and
then rephrase it in short, using possibly different tokens to construct
the names for the corresponding methods.

In this model, the encoder takes as input the contextual sentences,
which is embedded as the vector x = (x1, x2, ..., Xm), and encodes
the sentences into a hidden representation h = (hy, h, ..., hy,). The
decoder is responsible for predicting the probability of a method

Nguyen, Phan, Le, and Nguyen

ENC Context
PI profiler timer filter

public class [ProfilerTimerFilter] {

INF Context

i

if (!timerManager.containsKey(type)) {
o IMP Context

} timer manager

return timerManager.get(type).getMaximum(); contains key

type

3} get maximum

Figure 6: Context Extraction

Contextual
sentence

Source x
Embedding

Encoder RNN h

Attention

Decoder RN s ’[j ‘ D
Target :

Embedding y 1] 1] 1]

Figure 7: Abstractive Summarization Model

name that is expressed as the vector y = (y1, y2, ..., i) based on
the vector h. The probability of each token y; in the method name
is predicted based on the recurrent state of the decoder RNN s;, the
previous predicted token y<;, and a context vector ¢;:

P(ily<i, x) = sof tmax(W{si; ci] + b)

where c;, called the attention vector, is calculated based on s;, and
. o -) ~_ _att(si,hy)
the encoder hidden states, h: ¢; = Zj ajjxhj,and a;j = 3, att(sihy)

att(s;, h;j) is an attention function that computes an unnormalized
alignment score between the encoder state h; and the decoder state
si [17]. Generally, the context vector c¢; helps the decoder decide
which parts of the contextual sentence to focus on at each gener-
ation step to generate y;. For example, the prediction of the third
token in the method name depends on s3, the previous generated
tokens for the method name: get and maximum, and the attention
vector c3, which is produced based on s3 and h. c3 assists the de-
coder to find the relevant parts in the contextual sentence. In this
case, the relevant parts in the contextual sentence are timer in
ENC, long in INF rather than type in IMP. Finally, the most likely
token in the third position of the method name is time. Details on
the model seq2seq can be found in another document [17].

4.4 Method Name Consistency Checking

To check the consistency for a method with the name ¢, we com-
puted the similarity Sim(p, ¢) between the name p produced by

Suggesting Natural Method Names to Check Name Consistencies

Table 2: MCC Corpus for Method Name Consistency Check

Test data | Train data
#Methods 2,700 1,962,872
#Files - 250,972
#Projects - 430
#Unique method names - 540237
#0ccurence>1 - 33.5%

MNIRE in Section 4.3 and the current name c. Sim(p, c¢) € [0, 1], is
defined as the portion of the tokens that are shared between p and c:

numO f SharedTokens(p, c)
(numO fTokens(p) + numO f Tokens(c))/2

Sim(p, c) =

where numO fSharedTokens(p, c) is the number of the shared to-
kens of p and ¢, numO fTokens(p) and numO fTokens(c) are the
numbers of tokens of p and c. The consistency of the method m is
decided using a varied threshold T. In particular, if Sim(p,c) < T,
MNIRE classifies ¢ as inconsistent, otherwise c is classified as con-
sistent with the method’s implementation. Currently, MNIRE uses
lexical similarities. However, semantic and syntactic similarities
can be detected by more sophisticated representation techniques
such as word embedding [31] on the method names.

5 EMPIRICAL METHODOLOGY

We evaluated MNIRE in its main goals of method name consis-
tency checking (MCC) and method name recommending (MNR).
For evaluation, we seek to answer the following questions:

RQ3: Accuracy and Comparison. How accurate is MNIRE in method
name consistency checking and recommending? and how is it com-
pared with the state-of-the-art approaches for method name consis-
tency checking in [33] and method name recommending in [12]?
RQ4: Context Analysis. How do the three contexts contribute to
MNIRE’s accuracy in MCC and MNR in different settings?

RQ5: Sensitivity Analysis. How do various factors affect MNIRE’s
performance, such as representations, data’s sizes, thresholds?
RQ6: Time Complexity. What is MNIRE’s training/testing time?
RQ7: Usefulness. How useful is MNIRE in MCC and MNR?

5.1 Datasets

1. Corpus for Method Name Consistency Checking (MCC Cor-
pus.) For comparison, we used the same corpus as in the state-of-
the-art technique for MCC in Liu et al. [33]. The training dataset
(Table 2) from that corpus was collected from the highly-rated, open-
source projects from four communities, namely Apache, Spring,
Hibernate, and Google. It contains the latest versions of 430 Java
projects with at least 100 commits. In total, it has 1,960,872 methods,
which were considered by Liu et al. [33] as good/consistent names
because they selected the methods whose names have been stable
for a long time. The testing dataset consists of 2,700 methods in
which half of them are labelled as consistent and the other half
as inconsistent. For the inconsistent ones, the authors chose the
methods whose names have been modified/replaced by developers
in the projects for the reasons of confusing or inconsistent names.
In each dataset, the duplicated Java files and migrated projects and
the forks of the same projects are filtered out.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 3: MNR Corpus for Method Name Recommending

[Test data [Train data [Total

[Dataset 1] Comparison Experiment with code2vec
#Files 61,641 1,746,272 1,807,913
#Methods 458,800 14,000,028 14,458,828
[Dataset 2] Experiments for RQ4, RQ5, RQ6, RQ7
#Project 450 9,772 10,222
#File 51,631 1,756,282 1,807,913
#Methods 466,800 13,992,028 14,458,828

[Dataset 3] Live Study on Real Developers

#Project 100 100
#File 18,970 18,970
#Methods 139,827 139,827

2. Corpus for Method Name Recommendation (MNR Cor-
pus.) We compared MNIRE with code2vec [12]. The authors pro-
vided the tool, the list of projects and the procedure to collect the
training and testing data, without the dataset itself. We followed
the same setting and procedure to build the corpus. We collected
10K top-ranked, public Java projects on GitHub. The MNR corpus
contains about 14.5M methods and 1.8M unique files (Table 3).

In the comparative study, we used the same setting as in code2vec.
We divided the MNR corpus into the training and test data in a ratio
that is comparable with the numbers in code2vec’s experiments,
accordingly to the number of files. Specifically, all the files in all the
projects are shuffled and split into 1.7M training and 61K testing
files, i.e., 14M training and 458K testing methods.

In the experiments for RQ4, RQ5 and RQ6, we split the corpus
based on the number of projects, instead of files. The project-based
setting reflects better the real-world usage of MNIRE where it is
trained on the set of existing projects and used to check for a new
project. Thus, in MNR corpus, we split into training and testing
projects such that the ratios of the numbers of training and testing
files and methods are comparable to the ratios in the file-based
setting in code2vec [12]. Finally, we randomly shuffled and split all
the projects in the MNR corpus into 9,772 training and 450 testing
projects (Table 3). The dataset for live study will be explained later.

For a non-bias evaluation, these datasets for empirical evaluation
are different from the dataset in our empirical study (Section 3).

5.2 Evaluation Setup, Procedure, and Metrics

Comparative Study. For each application of MCC and MNR, we
trained each model under study with the respective training dataset
and then tested it with the testing dataset accordingly.

Context Analysis. For each application, to study the impacts of
different contexts, we created different variants of MNIRE with
different combinations of contexts, and measured the performance.
Sensitivity Analysis. For each application, we studied the im-
pacts of the following factors: representation, similarity threshold,
context and data sizes. We varied them and measured performance.
Metrics. For MCC, we compared the predicted cases against the
ground truth on consistent and inconsistent method names pro-
vided as part of MCC corpus [33]. For MNR, we compared pre-
dicted names against the good method names in the MNR oracle,
which was built as in code2vec [12]. To measure the performance
in MCC, we used the same metrics as in Liu et al. [33] including

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Precision, Recall, F-score, and Accuracy for both inconsistency (IC)
|TP|
|TP|+|FP|’

%, and Recall

in which TP is true positive (IC is classified as IC),

and consistency (C) classes. For IC class, Precision = and

___|TP]|
Recall = [TP+[FN]
_ __ITN|
= TN+ IFP]’
FN is false negative (IC is classified as C), TN is true negative (C is
classified as C), and FP is false positive (C is classified as IC). For

both IC and C, F-score is defined as 2XPrecisionxRecall ' pcoyracy
Precision+Recall

y= \TP|+\‘IZI€||:I‘TTJI\\I,\|+|FN| = TP +|TN|.

For method name recommending (MNR), we used the same met-
rics as in code2vec [12] and [6], which measure Precision, Recall,
and F-score over case-insensitive tokens. Specifically, for the pair
of an expected method name e and its recommended name r, the
precision, pre(e, r), and recall, rec(e, r) are computed as: pre(e, r) =

|token(r)ntoken(e)| |token(r)ntoken(e)| .
T Ttoken(] " Trokente) > token(n)

returns the tokens in the name n. Precision, recall, and F-score of
the set of the suggested names are defined as the average ones of all
the cases. We also counted exact-matched and case-sensitive ones.

.For C class, Precision =

is defined: Accurac

, and rec(e,r) =

6 EMPIRICAL RESULTS

6.1 Accuracy Comparison (RQ3)

6.1.1 Accuracy on Method Consistency Checking (MCC) (Ta-
ble 4). For the IC classification, MNIRE’s recall and precision are
10.4% and 10.8% relatively higher than Liu et al. [33]. Recall in this
case refers to detecting inconsistent methods, and precision means
precise in detecting the inconsistent name for a given method.

We also found that the key reason for such improvement is the
use of program entities’ names in MNIRE. In Liu et al. [33], the prin-
ciple of their method is “methods implementing similar behaviors
in their bodies are likely to be given similar names, and vice versa”.
Given a method m whose body is b and name is n, during identi-
fying the set M}, of similar method bodies for b, to calculate the
similarity of two methods, their tool renames all the local variables
of the same type T to a single name, TVar [33]. This increases the
similarity of methods that actually implement different tasks. As a
consequence, My, (the set of methods with similar bodies with m) is
incorrectly expanded, and for an inconsistent method, M, might
overlap with My, (the set of methods with similar names). Their tool
incorrectly considers this case as consistent since M, N M, # 0.
This leads to that the inconsistent methods might not be classified as
inconsistent (lower recall), and the predicted inconsistent methods
might be incorrect (lower precision). MNIRE does not have this
issue because it uses the concrete tokens of the program entities’
names, rather than their types.

For the C classification, MNIRE detects better consistent names
than Liu et al. [33] with relatively higher recall (16.6%) and preci-
sion (9%). We found that there exist several cases that do not follow
the main principle of their technique. There are consistent methods
which are similarly implemented, however are named differently.
For example, in Apache Axiom and Apache Tika, there are two
methods having the same body: return stream;, however, they are
given 2 different names getInputStream and getOutputStream.
Both are consistent. Liu et al. [33] considers one of them as inconsis-
tent because one method belongs to the set M, of the other, but not
the set My,. Thus, the recall is lower. In this case, MNIRE uses as a

Nguyen, Phan, Le, and Nguyen

Table 4: Consistency Checking Comparison Results (in %)

Liu et al. [33] | MNIRE

Precision 56.8 62.7

IC | Recall 84.5 93.6
F-score 67.9 75.1
Precision 51.4 56.0

C | Recall 72.2 84.2
F-score 60.0 67.3
Accuracy 60.9 68.9

Table 5: Name Recommending Comparison Results (in %)

code2vec [12] | MNIRE
Precision 63.1 70.1
Recall 54.4 64.3
F-score 58.4 67.1
Exact Match - 43.1

feature the returned type (either InputStreamor OutputStream)in
the interface context to generate the good names and consider both
cases as consistent. Moreover, we found other cases in which two
methods are named the same, but implemented in different ways for
different tasks. For example, in Apache ServiceMix, in two classes
StartCommand and StopCommand, there are two methods with the
same name handle(.) with different bodies artifact.start() and
artifact.stop(). Their tool considers one of them inconsistent
since one method belongs to M, of the other but not the set M.
MNIRE uses the class names StartCommand and StopCommand to
generate the good name handle, and considers both as consistent.

6.1.2 Accuracy on Method Name Recommendation (MNR)
(Table 5). As seen, our tool MNIRE achieves relatively higher than
code2vec [12] in both recall (18.2%) and precision (11.1%). First,
with higher recall, MNIRE generates a method name covering more
correct tokens than the name created by code2vec. Second, with
higher precision, the proportion of the correct tokens in the name
generated by MNIRE is also higher.

Analyzing the results, we found a reason for code2vec to have a
lower recall. With encoding code structures, it requires two methods
to have similar structures to have similar names. Thus, two methods
that are realized in different structures are not likely to be similarly
named by code2vec. In fact, source code with different structures
can have similar names. In this case, code2vec recommends two
different names. This leads to lower recall of code2vec than MNIRE.

We also investigated the reason for MNIRE’s higher precision
over code2vec [12]. There are cases in which two methods are re-
alized in the same structure, but are named differently since they
are in different classes for different purposes (e.g., different types of
files). code2vec suggested the same name since two methods have
the same body. However, MNIRE takes richer contexts, e.g., the
enclosing class context, whose name has a strong correlation with
the method names (Section 3). Thus, it improves precision over
code2vec. Interestingly, 43.1% of the cases suggested by MNIRE are
exactly matched with the correct method names in the oracle.

6.1.3 Generative Capability to Infer Previously Un-seen Me-
thod Names. We studied MNIRE’s performance on the suggested
method names that were not in the training data. There are +60K
(13.1%) out of +460K generated cases that were not seen during

Suggesting Natural Method Names to Check Name Consistencies

M Precision Recall @ Distribution

1-5L0Cs 6-15L0Cs 16-25 LOCs >25L0Cs

Figure 8: Accuracy by different Methods’ Sizes in Test Set

Table 6: Impact of Contexts on MCC Results (in %)

IMP | IMP+INF | IMp+ENC | TMP +INF+ ENC
=MNIRE

Precision | 60.2 61.7 61.0 62.7

IC Recall 90.0 92.1 91.3 93.6
F-score 72.1 73.9 73.1 75.1
Precision | 53.2 55.1 54.1 56.0

C Recall 79.3 82.3 80.6 84.2
F-score 63.7 66.0 64.7 67.3
Accuracy 62.1 65.2 64.2 68.9

Table 7: Impact of Contexts on MNR Results (in %)

IMP | IMP+INF | IMp+ENC | IMP+INF+ENC
= MNIRE
Precision 49.7 | 63.2 54.4 66.4
Recall 43.3 57.8 48.9 61.1
F-score 463 | 60.4 51.5 63.6
Exact Match | 20.2 | 34.7 25.7 43.1

training. The precision and recall of this set of generated ones are
59.8% and 58.3%, respectively. Especially, in 16.8% of these generated
cases (i.e., 2.2% total cases), the generated names exactly match with
the expected ones in the oracle. Thus, MNIRE predicts well even
the un-seen method names. This shows that it learns to suggest the
method names, rather than retrieving what have been stored in the
training corpus.

6.1.4 Accuracy by the Sizes of Methods in Test Set. We also
studied MNIRE’s accuracy on the methods with different sizes. In
Figure 8, as expected, MNIRE works well on the methods with the
regular sizes (1-25 LOCs). Even on the longer methods (+25 LOCs),
MNIRE’s accuracy decreased gracefully with the precision and recall
of 47.0% and 41.4% respectively. This shows that it is harder to
capture the functionality of a longer method. Especially, in 7,826
cases out of about 31K long methods (+25 LOCs), the suggested
names exactly match with the correct names (see our website [1]).

6.2 Context Analysis Results (RQ4)

As seen in Tables 6 and 7, additionally using interface context (INF)
with implementation context (IMP) provides accuracy improvements
in both applications. Specifically, for MNR, precision and recall
significantly increases from 49.7% to 63.2% and from 43.3% to 57.8%,
i.e, relatively increases 27% and 33.5%, respectively. This means that
when we used both bodies and interfaces, the proportions of the
correct tokens in a generated name was improved 27%, while 33.5%
more correct tokens are found in comparison with the case of using
only IMP. Meanwhile, for MCC, there are slightly improvements
in the precision and recall for both classes, IC and C, resulting the
improvements in F-score of 2-3% for both IC and C. Note that the
results in Tables 6-7 are in incomparable metrics and obtained
when running the models in different datasets (Section 5.1).

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 8: Impact of Representation on MCC Results (in %)

Lexeme | AST | Graph | MNIRE
Precision | 59.0 57.2 55.3 62.7
IC | Recall 88.3 85.6 80.3 93.6
F-score 70.7 68.6 65.5 75.1
Precision | 47.1 46.2 45.8 56.0
C Recall 78.2 73.5 72.1 84.2
F-score 58.8 56.8 56.0 67.3
Accuracy 52.0 51.1 50.5 68.9

Table 9: Impact of Representation on MNR Results (in %)

Lexeme | AST | Graph | MNIRE
Precision 29.5 23.1 16.2 50.6
Recall 25.1 29.2 30.3 45.1
F-score 27.1 25.9 21.1 47.7
Exact Match | 9.1 8.1 4.7 22.1

Let us explain an example of the impact of INF. The method
setRowsPerPage was identified as having an unclear name by its
developers. Using only IMP, MNIRE suggested the name getItems-
PerPage. It correctly predicted 3 tokens, however, it failed to predict
token set. Meanwhile, using IMP+INF, it can suggest the correct
name setItemsPerPage. The reason is that it can associate the re-
turn type of void and parameter’s type of int, with the token set.

Adding enclosing class context ENC to IMP, precision and recall
of name suggestion improve 9.5% and 12.9% relatively. Meanwhile,
for consistency checking, precision and recall slightly increase
for both IC and C classes (+1.5% relatively). For example, if two
methods with the same body, IMP model could incorrectly produce
the same name. However, relying on the class names for different
tasks, IMP+ENC can correctly suggest the names for both methods.
As a result, both methods are correctly considered as consistent.

Compared to IMP+INF, the improvement of IMP+ENC over IMP
is lower. The reason is that INF has a better predictive relation with
method name in term of the proportion of shared tokens and the
occurrences of tokens in method name conditionally depending on
a context. Note that, the numbers of tokens in INF and ENC are few
and much smaller than that in IMP (INF and ENC do not contain
many entities). Thus, the improvements over IMP are relatively
small (Table 6). With all contexts, MNIRE achieves highest accuracy.
The impacts of contexts’ sizes and quality are in Section 6.3.

6.3 Sensitivity Results (RQ5)

1. Accuracy with Different Representations. MNIRE parses the
code and built different representations before using seq2seq model.

1) Lexeme: all the tokens in the body are collected.

2) AST: the method’s body is parsed to build the AST; the input
to the seq2seq model is the sequence of the tokens in the AST with
the use of the delimiters to encode the tree structures.

3) Graph: the method’s body is parsed to build the PDG. All the
PDGs in the entire corpus are converted to vectors using a tool
named graph2vec [38]. All the vectors are then fed to seq2seq.

As seen in Tables 8 and 9, the more sophisticated representations
are used, the lower accuracies in both MCC and MNR. Comparing
AST model with Lexeme model, for MNR, precision decreases 21.7%
relatively, whereas recall increases only 13.6%. This is reasonable
considering the similarity conditions of two models. If two methods
have the same sequence of lexical tokens, they will have the same

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Table 10: Impact of Contexts’ Sizes on MNR Results (in %)

[[1-10 tokens [10-20 tokens [20-30 tokens [+30 tokens l
| F-score | 35.9 [411 [432 [510 |

Table 11: Impact of Tokens’ Lengths in Contexts on MNR

[[0-80% | 80-90% | 90-95% | +95% |
[Fscore | 370 [394 [425 [485 |

Table 12: Impact of Training Data’s Size on MNR results (%)

Projects 1.0K | 25K | 5.0K | 7.5K | 9,772
Precision 41.1 56.2 63.1 64.9 66.4
Recall 47.8 53.7 57.6 59.5 61.1
F-score 44.2 54.9 60.2 62.0 63.6
Exact Match | 19.9 29.4 34.8 36.9 38.2

AST, thus will be given the same name by both models. However,
if two methods have the same AST, they might not necessarily
have the same sequence of lexical tokens. Thus, the Lexeme model
has stricter similarity condition, leading to its higher precision but
lower recall. However, the F-score of the AST model is still lower
than the Lexeme model’s. Similarly, the Graph model has lower
precision and higher recall than the Tree model because Tree model
has a stricter similarity condition than Graph model. F-score of the
Tree model is still higher than that of the Graph model.

The fact that MNIRE achieves highest accuracies shows that the
representations of the method bodies such as text, tree, graph, are im-
portant for code structures, however for method naming, the natural-
ness factor, i.e., the program entities’ names are more deciding factors.

2. Impact of Contexts’ Sizes on Accuracy. We aimed to measure
the impact of the size of contexts on accuracy. For MNR, we divided
the training data into four buckets of the methods with different
sizes of their contexts: the buckets with 1-10, 10-20, 20-30, and +30
tokens in the contexts. Each bucket contains 3M methods and are
used as training. As seen in Table 10, with longer contexts (having
more tokens), MNIRE performs better as it has seen more possible
tokens. Thus, using training data with longer contexts is better.

3.Impact of Lengths of Tokens in Contexts on Accuracy. While
the previous study focused on contexts’ sizes, this one focuses on
the tokens of the entities’ names in the contexts. We divided the
methods in the training data into buckets according to the percent-
age of the tokens in its contexts that have more than one character.
The rationale is that the higher this percentage, the more meaning-
ful names in the contexts, i.e., the higher quality of the contexts.
Each bucket has 2M methods for training. As seen in Table 11,
accuracy increases much when contexts contain more meaningful
tokens/names. Thus, for training, one should select the methods
with more tokens of the names having more than one character.

4. Impact of Training Data’s Size on Accuracy. We varied the
training data size by adding more data to a smaller size. As seen
in Table 12, the accuracy for MNR increases when we increase the
data size. In particular, precision and recall increase relatively more
than 50% and 20.5%, respectively, when data is increased from 1.0K
to 5.0K projects because more tokens can be found to form good
method names. Meanwhile, the increasing trend slows down when
data size is increased from 5K to 9.7K projects. The reason is that

Nguyen, Phan, Le, and Nguyen
Consistency _~

Accuracy

0.4

Inconsistency
09 0.95

Figure 9: Impact of Threshold on MCC results

the added data does not contain much more new names as in the
smaller sizes. The same trend is for the impact on MCC (not shown).
5. Impact of Threshold for MCC. We varied similarity threshold
T (Section 4.4) from 0.85 to 1.0 (Section 4.4). As seen in Figure 9,
both the F-score of IC and the accuracy are highest when T = 0.98,
while when T = 0.89, the F-score of C is maximized. The point
which balances the F-scores of IC and C at 64.7% is T = 0.94.

6.4 Time Complexity (RQ6)

All experiments were run on a Windows workstation with 16 Intel
Xeon 3.7GHz processors, 32GB RAM, and a single Quadro P5000.
For MCC, MNIRE took 3 hours for training, and classified with a
rate of 530 methods/second. For MNR, it took 15 hours for training,
compared to 30 hours by code2vec [12] with a higher performance
GPU (Tesla K80). While MNIRE collects the tokens of program enti-
ties’ names, code2vec traverses and builds paths along AST nodes to
capture code structures, which requires much more computation in
training. With a lower computation power machine, our prediction
rate is 700 methods/sec compared to 1K methods/sec of code2vec.
In brief, MNIRE is also more efficient than code2vec [12].

6.5 Live Study on Real Developers (RQ7)

To evaluate MNIRE’s usefulness, we conducted a study on active
open-source projects in which we submitted pull requests (PRs) of
method renaming suggested by MNIRE and assess PR acceptance
rates. To train MNIRE, we used the 10K top-ranked Java GitHub
projects from code2vec [12] (dataset 2, Table 3). To use as test dataset
(dataset 3, Table 3), we selected 100 active Java open-source GitHub
projects that were not in that training set. We ran MNIRE on the
projects to detect inconsistent method names and provide alterna-
tive names. Overall, MNIRE identified 3,682 out of 133,827 methods
as inconsistent in the testing dataset. To avoid much work for devel-
opers, we randomly selected only 50 cases of inconsistent method
names and suggested names. We performed method renaming refac-
toring in the projects and submitted the changes as pull requests.
As seen in Table 13, 5 cases were merged by the development
teams. Additionally, 13 PRs have been validated and approved by the
team members. For those cases, the developers acknowledged that
the current names are misleading and confusing, and welcomed the
suggested names as providing more meaningful names. However,
the PR changes have not been merged at the time of this writing
since the teams require additional tasks, e.g., reviewing and unit
testing before PRs can be merged to the main branch of a project.
In 13 (=5+8) cases, the development team agreed that the method
names are not intuitive and our names are more meaningful, how-
ever, they cannot approve the renaming at this point due to different

Suggesting Natural Method Names to Check Name Consistencies

Table 13: Results on Pull Requests of Real-world Projects

‘ Agree ‘ ‘ Agree - but Not Fix ‘ ‘ ‘ ‘ ‘ H
‘ Merged ‘ Approved H Cannot Fix ‘ Not Fix H Disagree ‘ No answer H Total H
| sl l 5| 8l sl soll

reasons. In 3 cases, the project temporarily do not approve the “non-
functional” changes (e.g., refactoring). In 2 cases, the method under
study is an overridden one from an external library. In 6 cases, the
developers, despite agreeing with the suggested names, stated that
they will not change them because the new names do not conform
to the convention in the projects. Two cases are the auto-generated
names. There are 11 cases where the developers disagree with our
suggested names, and in other 8 cases, we did not get responses by
the time of this writing. In brief, in 31/42 cases, the developers agree
that our suggested names are more meaningful than the current
names. This shows that MNIRE is useful in real-world projects.
Threats to Validity. Our data has only Java code. For code2vec
[12], we used the same metrics for comparison (i.e., the accuracy
metrics for a set of method names are the average of those for indi-
vidual names). We did not have a statistical test to compare with
MNIRE since they did not provide individual resulting names, and
running their tool requires a high-computational power machine.

7 RELATED WORK

MNIRE is related to the work on suggesting method names [6,
7,12, 33]. Liu et al. [33] relies on the principle that methods with
similar bodies have similar names. Our experiment showed that
several cases violate that principle in checking consistencies. When
comparing the methods’ bodies, they abstract the variables’ names
and keep their types. In contrast, MNIRE uses the names for infer-
ring a good method name. Similar to Liu et al [33], Jiang et al. [30]
use IR with the heuristics to search the methods having similar
return type and parameters to derive method names. code2vec [12]
is a vector representation for source code that is applied to method
name suggestion. In comparison, code2vec [12] is not a generative
model as in MNIRE. It computes the probability for a given name.
Moreover, code2vec encodes code structures in order to predict a
method name, and we have shown that it is too strict and less
effective in method name suggestion than using entities’ names.

Allamanis et al. [7] develop a neural network with attention
mechanism that uses convolution on the input code tokens to sum-
marize source code into short, descriptive method name-like sum-
maries. In comparison, while that model considers all the code
tokens in the source code, MNIRE focuses on the tokens of the
names of the program entities in not only the code, but also the
contexts including the interfaces and the enclosing class. Allamanis
et al [6]’s model projects all the names in the method bodies and the
tokens of the method names into the same space. From the vector
space, their model selects nearby tokens to compose a new method
name. MNIRE treats them in two separate spaces. Importantly, we
show that MNIRE outperforms code2vec [12], which has been shown
to perform better than both of those models [6, 7].

There are several approaches to recover/predict the names
or types of program entities within the method bodies [39, 41,

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

44, 46]. While JSNeat [44] searches for names in a large corpus
to recover variable names in minified code, JSNice [41] and JS-
Naughty [46] use condition random field and machine translation.
Naturalize [5] learns and enforces a consistent naming conventions.

Several works have proposed neural networks for code repre-
sentations for various SE tasks. The modeling ranges from encod-
ing code sequences, to code tree structures, to graph structures such
as data flow graph (DFG), control flow graph (CFG), and program
dependence graph (PDG). Code Vectors [26] encoded abstractions
of traces from symbolic execution using word2vec [36] for a general
purpose. code2vec [11, 12] uses CNN to build vocabulary-based em-
beddings for frequent paths on the ASTs. Tree LSTM [43] trained a
tree-structured LSTM model with the ASTs of methods. Deep Learn-
ing Similarity [45] used Recursive Autoencoders on Identifiers and
ASTs, and graph embedding [22] on CFGs to detect code clones.
Code2seq [10] also uses a set of compositional AST paths and uses
attention to select the relevant paths while decoding. DeepSim [50]
used feature values to encode control and data flows into a semantic
matrix and a feed-forward neural network to learn code functional
similarity. Graph-based Generative Modeling [18] is for general
purpose with interleaving grammar-driven expansion steps, graph
augmentation and neural message passing.

The other neural-network-based code modeling approaches us-
ing neural networks are for specific SE tasks including automated
correction for syntax errors [15], fuzz testing [21], program synthe-
sis [13], code clones [32, 42, 49], program summarization [7, 37],
code similarity [11, 50], probabilistic model for code [16], and path-
based representations [9, 11], code suggestion [27, 37], code min-
ing [8], type resolution [39], pattern mining [20].

Machine learning has been often used to generate texts/com-
ments from code [28, 29, 34, 47]. DeepCom [28] has a traversal
on AST structure for flattening, and uses seq2seq model to produce
code summary. CODE-NN [29] uses LSTM with attention on code
sequence to model the conditional distribution of a summary to
produce word by word. Wan et al. [47] incorporate AST structure
and code sequence into a deep reinforcement learning framework.
Haije treats this as code-to-text machine translation [25]. Zheng et
al. [48] uses AST structure for such statistical machine translation
to produce comments. Statistical NLP was used to generate code
from text, e.g., SWIM [40], DeepAPI [23], Anycode [24], etc.

8 CONCLUSION

We introduce MNIRE, a machine learning approach to suggest a
method name and to detect method name inconsistencies. We have
concluded the following results. First, to suggest a good name for
a method, relying on the naturalness of the program entities in
the contexts yields better results than using the AST or PDG struc-
tures. Second, method names are quite unique, however, the tokens
composing them are repeated frequently. Thus, MNIRE exploits
the regularity of the tokens in program entities’ names for method
name suggestion. Finally, our generative approach is more effective
in producing new names than IR-based search approach in a corpus.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation (NSF) grants CCF-1723215, CCF-1723432, TWC-1723198,
CCF-1518897, and CNS-1513263.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

REFERENCES

[9

=

[10

(11

[12]

[13]

[14

[15]

=
&

[17

(18]

[19]

[20]

[21

[22]

[23

[24]

[25

[26

[27]

[n.d.]. . https://doubledoubleblind.github.io/mnire/.

[n.d.]. Apache Cassandra. http://cassandra.apache.org/

[n.d.]. Apache Common IO. https://commons.apache.org/proper/commons-io/
[n.d.]. Apache MINA. https://mina.apache.org/

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE 2014). ACM
Press, 281-293.

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting Accurate Method and Class Names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, 38-49.
Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016 (JMLR
Workshop and Conference Proceedings), Vol. 48. JMLR.org, 2091-2100.

M. Allamanis and C. Sutton. 2013. Mining source code repositories at massive
scale using language modeling. In Proceedings of the 10th IEEE Working Conference
on Mining Software Repositories (MSR’13). IEEE CS, 207-216.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

Uri Alon, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences
from Structured Representations of Code. In International Conference on Learning
Representations (ICLR 2019). https://openreview.net/forum?id=H1gKYo09tX
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. code2vec:
Learning Distributed Representations of Code. CoRR abs/1803.09473 (2018).
arXiv:1803.09473 http://arxiv.org/abs/1803.09473

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2Vec:
Learning Distributed Representations of Code. Proceedings of the ACM on
Programming Languages 3, POPL, Article 40 (Jan. 2019), 29 pages. https:
//doi.org/10.1145/3290353

Matthew Amodio, Swarat Chaudhuri, and Thomas W. Reps. 2017. Neural
Attribute Machines for Program Generation. CoRR abs/1705.09231 (2017).
arXiv:1705.09231 http://arxiv.org/abs/1705.09231

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473
(2014). arXiv:1409.0473 http://arxiv.org/abs/1409.0473

Sahil Bhatia and Rishabh Singh. 2016. Automated Correction for Syntax Er-
rors in Programming Assignments using Recurrent Neural Networks. CoRR
abs/1603.06129 (2016). arXiv:1603.06129 http://arxiv.org/abs/1603.06129

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic
Model for Code. In Proceedings of the 33rd International Conference on Machine
Learning (ICML 2016) (Proceedings of Machine Learning Research), Vol. 48. PMLR,
2933-2942. http://proceedings.mlr.press/v48/bielik16.html

Denny Britz, Anna Goldie, Thang Luong, and Quoc Le. 2017. Massive Explo-
ration of Neural Machine Translation Architectures. ArXiv e-prints (March 2017).
arXiv:cs.CL/1703.03906

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polo-
zov. 2018. Generative code modeling with graphs. arXiv preprint arXiv:1805.08490
(2018).

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. 2009. Relating Identifier Naming
Flaws and Code Quality: An Empirical Study. In Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE 2009). 31-35. https://doi.org/10.1109/
WCRE.2009.50

Jaroslav M. Fowkes and Charles A. Sutton. 2015. Parameter-Free Probabilistic
API Mining at GitHub Scale. CoRR abs/1512.05558 (2015). http://arxiv.org/abs/
1512.05558

Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn and Fuzz: Machine
Learning for Input Fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2017). IEEE Press, 50-59.
Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78-94.
Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). ACM, 631-642.

Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from Free-
form Queries. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2015). ACM, 416-432.

Tjalling Haije. [n.d.]. Automatic Comment Generation using a Neural Translation
Mode.

Jordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas W. Reps. 2018. Code Vec-
tors: Understanding Programs Through Embedded Abstracted Symbolic Traces.
CoRR abs/1803.06686 (2018). arXiv:1803.06686 http://arxiv.org/abs/1803.06686
Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the naturalness of software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE 2012). IEEE Press, 837-847.

Nguyen, Phan, Le, and Nguyen

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment
Generation. In Proceedings of the 26th Conference on Program Comprehension
(ICPC °18). ACM, 200-210. https://doi.org/10.1145/3196321.3196334

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2073-2083. https:
//doi.org/10.18653/v1/P16-1195

Lin Jiang, Hui Liu, and He Jiang. 2019. Machine Learning Based Automated
Method Name Recommendation: How Far Are We. In Proceedings of the 34th
ACM/IEEE International Conference on Automated Software Engineering (ASE’19).
IEEE CS.

Jey Han Lau and Timothy Baldwin. 2016. An Empirical Evaluation of doc2vec with
Practical Insights into Document Embedding Generation. In Proceedings of the
1st Workshop on Representation Learning for NLP. Association for Computational
Linguistics, 78-86. https://doi.org/10.18653/v1/W16-1609

Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In Proceedings
of the 33rd IEEE International Conference on Software Maintenance and Evolution
(ICSME 2017). 249-260. https://doi.org/10.1109/ICSME.2017.46

Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Taeyoung Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to Spot and Refactor
Inconsistent Method Names. In Proceedings of the 41th International Conference
on Software Engineering (ICSE °19). ACM, 1-12.

Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019.
Automatic Generation of Pull Request Descriptions. In Proceedings of the 34th
ACM/IEEE International Conference on Automated Software Engineering (ASE’19).
IEEE CS.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba.
2014. Addressing the Rare Word Problem in Neural Machine Translation. CoRR
abs/1410.8206 (2014). arXiv:1410.8206 http://arxiv.org/abs/1410.8206

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Compositional-
ity. In Proceedings of the 27th Annual Conference on Neural Information Processing
Systems 2013 (NIPS’13). 3111-3119.

Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based
Convolutional Neural Network for Programming Language Processing. CoRR
abs/1409.5718 (2014). arXiv:1409.5718 http://arxiv.org/abs/1409.5718
Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, and Yang Liu. [n.d.]. graph2vec: Learning distributed representations of
graphs. ([n.d.]).

Hung Phan, Hoan Anh Nguyen, Ngoc M. Tran, Linh H. Truong, Anh Tuan
Nguyen, and Tien N. Nguyen. 2018. Statistical Learning of API Fully Qualified
Names in Code Snippets of Online Forums. In Proceedings of the 40th International
Conference on Software Engineering (ICSE ’18). ACM, 632-642.

Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean: Code Search and Idiomatic Snippet Synthesis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). ACM, 357-367.
Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM,
111-124.

Randy Smith and Susan Horwitz. 2009. Detecting and Measuring Similarity in
Code Clones. In Proceedings of the 2009 International Workshop on Software Clones
(IWSC 2009). IEEE CS, 28-34.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. CoRR abs/1503.00075 (2015). arXiv:1503.00075 http://arxiv.org/abs/1503.
00075

Hieu Tran, Ngoc Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. 2019.
Recovering Variable Names for Minified Code with Usage Contexts. In Proceedings
of the 41st International Conference on Software Engineering (ICSE’19). IEEE Press,
1165-1175.

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep Learning Similarities from Different
Representations of Source Code. In Proceedings of the 15th International Conference
on Mining Software Repositories (MSR ’18). ACM, 542-553. https://doi.org/10.
1145/3196398.3196431

Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering
Clear, Natural Identifiers from Obfuscated JS Names. In Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM,
683-693.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S. Yu. 2018. Improving Automatic Source Code Summarization via Deep
Reinforcement Learning. CoRR abs/1811.07234 (2018). arXiv:1811.07234 http:
//arxiv.org/abs/1811.07234

Ming Li Wenhao Zheng, Hongyu Zhou and Jianxin Wu. 2018. CodeAttention:
translating source code to comments by exploiting the code constructs. Frontiers

http://cassandra.apache.org/
https://commons.apache.org/proper/commons-io/
https://mina.apache.org/
https://openreview.net/forum?id=H1gKYo09tX
http://arxiv.org/abs/1803.09473
http://arxiv.org/abs/1803.09473
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
http://arxiv.org/abs/1705.09231
http://arxiv.org/abs/1705.09231
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1603.06129
http://arxiv.org/abs/1603.06129
http://proceedings.mlr.press/v48/bielik16.html
http://arxiv.org/abs/cs.CL/1703.03906
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/WCRE.2009.50
http://arxiv.org/abs/1512.05558
http://arxiv.org/abs/1512.05558
http://arxiv.org/abs/1803.06686
http://arxiv.org/abs/1803.06686
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/W16-1609
https://doi.org/10.1109/ICSME.2017.46
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075
https://doi.org/10.1145/3196398.3196431
https://doi.org/10.1145/3196398.3196431
http://arxiv.org/abs/1811.07234
http://arxiv.org/abs/1811.07234
http://arxiv.org/abs/1811.07234

Suggesting Natural Method Names to Check Name Consistencies ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

of Computer Science 13 (2018), 565-578. [50] Gang Zhao and Jeff Huang. 2018. DeepSim: Deep Learning Code Functional

[49] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Similarity. In Proceedings of the 26th ACM Joint Meeting on European Software
2016. Deep Learning Code Fragments for Code Clone Detection. In Proceedings Engineering Conference and Symposium on the Foundations of Software Engineering
of the 31st IEEE/ACM International Conference on Automated Software Engineering (ESEC/FSE 2018). ACM, 141-151. https://doi.org/10.1145/3236024.3236068

(ASE 2016). ACM, 87-98. https://doi.org/10.1145/2970276.2970326

https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1145/3236024.3236068

