
Feature-Interaction Aware Configuration Prioritization
Son Nguyen

The University of Texas at Dallas
Richardson, Texas, USA
sonnguyen@utdallas.edu

ABSTRACT
Unexpected interactions among features induce most bugs in a
configurable software system. Exhaustively analyzing all exponen-
tial number of possible configurations is prohibitively costly. Thus,
various sampling methods have been proposed to systematically
narrow down the exponential number of configurations to be tested.
Since testing all selected configurations can require a huge amount
of effort, fault-based configuration prioritization, that helps detect
bugs earlier, can yield practical benefits in quality assurance. In this
paper, we propose CoPo, a novel formulation of feature-interaction
bugs via common program entities enabled/disabled by the features.
Leveraging from that, we develop an efficient feature-interaction-
aware configuration prioritization technique for configurable sys-
tems by ranking configurations according to their total number
of potential bugs. We conducted several experiments to evaluate
CoPo on a public benchmark. We found that CoPo outperforms the
state-of-the-art configuration prioritization methods. Interestingly,
it is able to detect 17 not-yet-discovered feature-interaction bugs.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis;

KEYWORDS
configurable code, feature interaction, configuration prioritization
ACM Reference Format:
Son Nguyen. 2018. Feature-Interaction Aware Configuration Prioritization.
In Proceedings of the 26th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3236024.3275437

1 PROBLEM STATEMENT & BACKGROUND
A configurable system can provide a very large number of con-
figuration options that are used to control different features to
tailor systems’ properties to the needs of users and the require-
ments of customers. Features can interact with others in some
non-trivial manners to modify or influence the functionality of one
another [18]. Unexpected interactions might induce bugs. In facts,
most configuration-related faults are caused by feature interactions
[2, 6, 12]. Bugs in a particular variant can be detected by traditional
methods. Unfortunately, such tools cannot be directly applied to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275437

configurable systems. Furthermore, exhaustively analyzing a sys-
tem is infeasible due to the exponential number of configurations.

Researchers have proposed several techniques to narrow the con-
figuration space by eliminating invalid configurations that violate
the feature model of the system, which defines the feasible config-
urations via the constraints among the features [4, 5, 7, 9, 10, 15].
However, the number of configurations is still exponential. To ad-
dress this problem, researchers introduce various configuration
selection strategies. The popular strategies include the sampling
algorithms [1, 8, 11–14, 17] such as combinatorial interaction test-
ing [8, 11, 13, 14], one-enabled [12], one-disabled [1], to reduce the
number of variants to be tested. Still, those algorithms assume the
chances of detecting interaction bugs are the same for all those combi-
nations. Thus, interaction faults might be discovered only after the
last variants in such samples is tested. Finally, to detect defects in
the system in an effective manner, after configuration selection, the
selected set of configurations need to be prioritized for testing [3].

2 MOTIVATION AND OBSERVATION
The state-of-the-artmethod on configuration prioritization, similarity-
based prioritization (SP) [3] is still limited in detecting feature inter-
action bugs. This approach aims to cover as many different features,
but does not examine the nature of interaction between them, which
is the key aspect causing interaction bugs in a variant.

To illustrate the problem, let us consider a simplified version of
two feature-interaction bugs in the Linux kernel in Figure 1:
• A compile-time error occurs (using an undeclared function on
line 24) in the configurations in which CONFIG_TWL4030_CORE,
CONFIG_OF_DEVICE, and CONFIG_SPARC are enabled.

• A run-time error occurs (dereferencing a NULL variable, line 12) in
the configurationswhere CONFIG_TWL4030_CORE, CONFIG_OF_D-
EVICE are enabled, CONFIG_SPARC, CONFIG_OF_IRQ are disabled.
SP is based on the idea that dissimilar test sets are likely to de-

tect more defects than similar ones [3]. In Fig. 1, there are 24 legal
configurations under test. This set is then narrowed down to 20
by the 4-wise algorithm. By SP, the configuration with the maxi-
mum number of features is selected to be the first one under test
where TWL4030_CORE, IRQ_DOMAIN, OF_IRQ, and OF_DEVICE are
enabled, and SPARC is disabled. The next one is the configuration
that has the minimum number of similar features as the previ-
ously selected ones, where TWL4030_CORE, IRQ_DOMAIN, OF_IRQ,
and OF_DEVICE are disabled, and SPARC is enabled. Although the
second variant is most dissimilar compared to the first one, there
is no bug revealed by the second. Hence, the resulted schedule is
not an efficient testing order because the run-time and compile-
time bugs are not detected until the 4th and 6th variants are tested
respectively, while the variant with both bugs would only be dis-
covered via the 7th one. Another issue of SP is that the quality of
the resulted order is strongly depended on the first selection.

974

https://doi.org/10.1145/3236024.3275437
https://doi.org/10.1145/3236024.3275437

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Son Nguyen

Figure 1: A simplified buggy version of Linux kernel

Observation. If we consider the declaration of of_platform_popu-
late in L (line 5) and its use in Z (line 24), the configuration which
enables Z and disables L (CONFIG_OF_DEVICE=T, CONFIG_SPARC=T)
should be tested earlier to detect the first interaction bug.

3 APPROACH
We propose CoPo, a novel approach for configuration prioritization
based on detecting feature-interaction bugs. Unlike the SP which
does not examine the nature of potential bug-inducing feature inter-
actions,we analyze the code to detect feature interactions via
operations on the program entities that are shared between
features. Those operations, when the features are enabled or dis-
abled, potentially create a violation(s) of the program semantics,
which helps identify interaction bugs. The suspicious score of a
variant is determined via the total number of potential bugs. The
variants are ranked according to their suspicious scores.

Feature. In CoPo, a feature in configurable code is considered
to be implemented via the operations including declare, assign, use,
and destruct on a set of program entities including variables and
functions. For example, feature L is implemented via operation
declare on the function of_platform_populate and variable node.

Feature Interaction. Features interact with one another through
their operations on the shared program entities depending on the
manners that the shared entities operate in the features. In Fig.
1, of_platform_populate is declared in L, and L interacts with
Z where the function is used. In a configurable code, enabling or
disabling a feature is determined by certain configuration options’
selection. In Fig. 1, L is enabled if CONFIG_SPARC=F, and Z is enabled
when CONFIG_TWL4030_CORE and CONFIG_OF_DEVICE are true. In
fact, an option is used to configure source code of configurable
system, such that the option’s value determines the presence/ab-
sence of segments of code. Thus, we detect feature interactions
via common entities operating in thecode segments determined by
option selections. For example, because of_platform_populate
is respectively declared and used in the code segments determined
by CONFIG_SPARC=F and CONFIG_OF_DEVICE=T, there is a potential

declare-use interaction among features. In general, with the set of 4
operations, we define 9 kinds of feature interaction such as declare-
declare, declare-use and assign-use (7 of total 16 combinations are
redundant, e.g., declare-use and use-declare) that are statically de-
tected through program entities shared between features.

Configuration Prioritization. To prioritize a set of configura-
tions, our algorithm assigns a suspicious score to all configurations.
The score of a configuration is determined via the number of sus-
picious selections that potentially cause interaction bugs and flaws
in different kinds such as use without assignment and memory leak
that the variant might have. In CoPo, suspicious option selections
are identified based on the related kind of feature interaction. For
example, {CONFIG_SPARC=T, CONFIG_OF_DEVICE=T} are consid-
ered as suspicious because the related declare-use interaction, and
they potentially cause a use without declaration bug.

For example, by running CoPo, there are 4 suspicious selections:
• {CONFIG_SPARC=T, CONFIG_OF_DEVICE=T}
• {CONFIG_OF_IRQ=F, CONFIG_TWL4030_CORE=T}
• {CONFIG_SPARC=T, CONFIG_TWL4030_CORE=T}
• {CONFIG_IRQ_DOMAIN=F, CONFIG_OF_IRQ=F}

and a much better test schedule, where CoPo’s top-ranked configu-
ration discovers both above feature interaction bugs.

4 EMPIRICAL EVALUATION
We compare CoPo against SP and random prioritization when we
run them on the results of 4 advanced sampling methods [12]. We
use the Variability Bugs Database [2] with 98 real-world, verified
configuration-related bugs in different versions of configurable
systems. We select 46 buggy versions that have bugs not related to
pointers or external data. We run each sampling method on each
version separately to select a subset of valid configurations, which is
the input of the prioritization performed by the three methods. The
output schedules of the methods are then evaluated via two metrics
Average Percentage Faults Detected (APFD) [16] and average rank
(AVGR). The higher APFD and the lower AVGR, the better schedule.

Table 1: Comparison Results

CoPo SP Random
APFD AVGR APFD AVGR APFD AVGR

Pairwise 0.93 1.58 0.75 4.03 0.68 5.23
Three-wise 0.95 2.45 0.89 4.74 0.82 8.00
OneEnabled 0.92 10.93 0.70 27.67 0.63 36.37
OneDisabled 0.86 14.76 0.57 38.21 0.60 37.34

Table 1 shows the average APFD and average rank for the three
approaches. As seen, CoPo achieves about 20% higher APFD on
average, and is able to rank the buggy configuration in a much
higher rank than SP and random approaches.

Conclusion.We introduceCoPo, an efficient feature-interaction-
aware configuration prioritization technique for configurable sys-
tems. The novel idea of CoPo is the code analysis to detect in-
teractions between features and use them to rank configurations.
Currently, we formulate feature interaction statically through a
complete set of operations on the entities shared between features.
More sophisticated interactions relevant to pointers and external
data such as files or databases can be detected by using other data
structures in the same principle and other analyses.

975

Feature-Interaction Aware Configuration Prioritization ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Iago Abal, Claus Brabrand, and AndrzejWasowski. 42 variability bugs in the linux

kernel: A qualitative analysis. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 421–432, New
York, NY, USA, 2014. ACM.

[2] Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej Wąsowski. Variability bugs in highly configurable systems: A qualitative
analysis. ACM Trans. Softw. Eng. Methodol., 26(3):10:1–10:34, January 2018.

[3] Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte Lochau, and Gunter
Saake. Similarity-based prioritization in software product-line testing. In Pro-
ceedings of the 18th International Software Product Line Conference - Volume 1,
SPLC ’14, pages 197–206, New York, NY, USA, 2014. ACM.

[4] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.
Symbolic model checking of software product lines. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 321–330, New
York, NY, USA, 2011. ACM.

[5] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. Model checking lots of systems: Efficient verification
of temporal properties in software product lines. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 335–344, New York, NY, USA, 2010. ACM.

[6] Brady J. Garvin and Myra B. Cohen. Feature interaction faults revisited: An
exploratory study. In Proceedings of the 2011 IEEE 22Nd International Symposium
on Software Reliability Engineering, ISSRE ’11, pages 90–99, Washington, DC,
USA, 2011. IEEE Computer Society.

[7] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling and
model checking software product lines. In Proceedings of the 10th IFIP WG 6.1
International Conference on Formal Methods for Open Object-Based Distributed
Systems, FMOODS ’08, pages 113–131, Berlin, Heidelberg, 2008. Springer-Verlag.

[8] Martin Fagereng Johansen, Oystein Haugen, and Franck Fleurey. An algorithm
for generating t-wise covering arrays from large feature models. In Proceedings
of the 16th International Software Product Line Conference - Volume 1, SPLC ’12,
pages 46–55, New York, NY, USA, 2012. ACM.

[9] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical

report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.
[10] Christian Kästner. Virtual separation of concerns: toward preprocessors 2.0.

it-Information Technology Methoden und innovative Anwendungen der Informatik
und Informationstechnik, 54(1):42–46, 2012.

[11] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. Practical
pairwise testing for software product lines. In Proceedings of the 17th International
Software Product Line Conference, SPLC ’13, pages 227–235, New York, NY, USA,
2013. ACM.

[12] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
A comparison of 10 sampling algorithms for configurable systems. In Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16, pages
643–654, New York, NY, USA, 2016. ACM.

[13] Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incremental
pairwise testing of software product lines. In Proceedings of the 14th International
Conference on Software Product Lines: Going Beyond, SPLC’10, pages 196–210,
Berlin, Heidelberg, 2010. Springer-Verlag.

[14] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le Traon.
Automated and scalable t-wise test case generation strategies for software product
lines. In Proceedings of the 2010 Third International Conference on Software Testing,
Verification and Validation, ICST ’10, pages 459–468, Washington, DC, USA, 2010.
IEEE Computer Society.

[15] H. Post and C. Sinz. Configuration lifting: Verification meets software config-
uration. In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 347–350, Washington, DC, USA,
2008. IEEE Computer Society.

[16] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Transactions on Software Engineering, 27(10):929–
948, Oct 2001.

[17] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. Configuration coverage in the analysis of large-scale system software.
SIGOPS Oper. Syst. Rev., 45(3):10–14, January 2012.

[18] Pamela Zave. Programming methodology. chapter An Experiment in Feature
Engineering, pages 353–377. Springer-Verlag New York, Inc., New York, NY, USA,
2003.

976

	Abstract
	1 Problem Statement & Background
	2 Motivation and Observation
	3 Approach
	4 Empirical Evaluation
	References

